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A B S T R A C T   

The synthetic dyes used in the textile industry pollute a large amount of water. Textile dyes do not bind tightly to 
the fabric and are discharged as effluent into the aquatic environment. As a result, the continuous discharge of 
wastewater from a large number of textile industries without prior treatment has significant negative conse-
quences on the environment and human health. Textile dyes contaminate aquatic habitats and have the potential 
to be toxic to aquatic organisms, which may enter the food chain. This review will discuss the effects of textile 
dyes on water bodies, aquatic flora, and human health. Textile dyes degrade the esthetic quality of bodies of 
water by increasing biochemical and chemical oxygen demand, impairing photosynthesis, inhibiting plant 
growth, entering the food chain, providing recalcitrance and bioaccumulation, and potentially promoting 
toxicity, mutagenicity, and carcinogenicity. Therefore, dye-containing wastewater should be effectively treated 
using eco-friendly technologies to avoid negative effects on the environment, human health, and natural water 
resources. This review compares the most recent technologies which are commonly used to remove dye from 
textile wastewater, with a focus on the advantages and drawbacks of these various approaches. This review is 
expected to spark great interest among the research community who wish to combat the widespread risk of toxic 
organic pollutants generated by the textile industries.   

1. Introduction 

Currently, water contamination because of the inability of textile 
industries to properly dispose of their waste water is one of the major 
challenges that affects the whole world. Textile industries are major 
contributors to the global economy and environmental pollution in 
many countries, including China and South African estuaries (Olisah 
et al., 2021). Wastewater containing dyes is a significant polluter of the 
environment which also affects human health, as textile industries 
generate large amounts of highly colored wastewater containing a 
diverse range of persistent pollutants (Almroth et al., 2021; Ali et al., 
2022). Annually, about 7 × 107 tons of synthetic dyes are produced 

worldwide, with over 10,000 tons of such dyes used by textile industries 
(Chandanshive et al., 2020). Dyes are often divided into several cate-
gories according to their origin, structure, and application (Holkar et al., 
2016; Akpomie and Conradie, 2020). Of these synthetic dyes, azo, 
direct, reactive, mordant, acid, basic, disperse, and sulfide dyes, are 
widely used by textile industries (Fig. 1). Natural and synthetic fibers 
used in the textile industry include wool, cotton, silk, polyester, poly-
amide, and acrylic (Deopura and Padaki, 2015; Silva et al., 2021). 
Furthermore, textile industries use a large number of highly toxic 
chemicals at various stages of the process, such as sizing, softening, 
desizing, brightening, and finishing agents (Kishor et al., 2021). How-
ever, textile dyes do not bind tightly to fabric and are discharged as 

* Correspondence to: Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China. 
E-mail addresses: samh@ujs.edu.cn, samh_samir@science.tanta.edu.eg (S.S. Ali), jzsun1002@ujs.edu.cn (J. Sun).   

1 Contributed equally. 

Contents lists available at ScienceDirect 

Ecotoxicology and Environmental Safety 

journal homepage: www.elsevier.com/locate/ecoenv 

https://doi.org/10.1016/j.ecoenv.2021.113160 
Received 30 August 2021; Received in revised form 30 December 2021; Accepted 31 December 2021   

mailto:samh@ujs.edu.cn
mailto:samh_samir@science.tanta.edu.eg
mailto:jzsun1002@ujs.edu.cn
www.sciencedirect.com/science/journal/01476513
https://www.elsevier.com/locate/ecoenv
https://doi.org/10.1016/j.ecoenv.2021.113160
https://doi.org/10.1016/j.ecoenv.2021.113160
https://doi.org/10.1016/j.ecoenv.2021.113160
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecoenv.2021.113160&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ecotoxicology and Environmental Safety 231 (2022) 113160

2

effluent alongside wastewater into aquatic environments such as lakes, 
rivers, streams, and ponds without prior treatment, posing serious eco-
toxicological threats with toxic effects on living organisms (Parmar 
et al., 2022). 

Textile wastewater has been found to contain a wide range of toxic 
dyes, heavy metals, such as mercury, chromium, cadmium, lead, and 
arsenic which are required in the production of textile dye color pig-
ments, as well as aromatic compounds. The presence of heavy metals 
such as mercury, chromium, cadmium, lead, and arsenic is required in 
the production of textile dye color pigments (Singha et al., 2021). These 
toxic chemicals are transported over long distances together with the 
wastewater. They then remain in the water and soil for long periods of 
time, posing serious health risks to living organisms and reducing soil 
fertility as well as the photosynthetic activity of aquatic plants, resulting 
in the development of anoxic conditions for aquatic fauna and flora 
(Dutta and Bhattacharjee, 2022). Textile dyes also degrade the esthetic 
quality of water bodies by increasing biochemical and chemical oxygen 
demand, thereby impairing photosynthesis, inhibiting plant growth, 
entering the food chain, providing recalcitrance and bioaccumulation, 
and potentially promoting toxicity, mutagenicity, and carcinogenicity 
(Mudhoo et al., 2020; Patil et al., 2022). The large amounts of water 
used in fabric manufacturing result in equally large amounts of waste-
water containing high levels of dissolved solids, organics, metals, salts, 
and recalcitrant dyes (Ismail and Sakai, 2021), because of the high 
durability and solubility of synthetic dyes in water, conventional treat-
ment options are frequently ineffective (Shindhal et al., 2021), while 
secondary pollution and inefficient removal of organic load upon 
discoloration necessitate the use of advanced approaches (Samsami 
et al., 2020). Therefore, there is an urgent need to develop cost-effective 
and environmentally friendly treatment approaches for adequately 
treating dye-containing wastewater prior to its final disposal into the 

environment. Under this premise, this review will provide a detailed 
knowledge on the adverse impacts of dye-containing textile wastewater 
on natural ecosystems and living organisms along with the various 
existing and advanced treatment approaches for the better management 
of textile wastewater with a view to working towards environmental 
safety. 

2. Toxicity and the impact of textile dyes 

The untreated effluents released by the textile industry contain a 
diverse range of organic pollutants, the most prevalent of which are 
textile dyes (Oyeniran et al., 2021). Azo dyes, which contain one or more 
azo groups structurally, are the largest class (above 60%) among the 
various groups of textile dyes and the most widely used dyes in the 
textile industry (Ayed et al., 2011; Bhattacharya et al., 2018; Thangaraj 
et al., 2021). Inefficient textile dyeing processes cause 15–50% of azo 
dyes that are not bound to fibers and fabrics to be released into gener-
ated wastewater (Chung, 1983; Singha et al., 2021). Some textile fac-
tories treat their wastewater to degrade the free azo dyes released into 
the environment, while others discharge untreated industrial effluents 
directly into bodies of water, posing serious ecotoxicological threats as 
well as toxic effects on living organisms (Fig. 2). Farmers in developing 
countries used to irrigate their agricultural lands with wastewater con-
taining untreated industrial effluents, which had a negative impact on 
soil quality and crop germination rates (Jiku et al., 2021; Ao and Zayed, 
2022). 

Azo dyes discharged into water reduce light penetration, impairing 
the performance of algae and growing aquatic plants. Furthermore, dyes 
ingested by fish and other living organisms can be metabolized in their 
bodies into toxic intermediates, which can have a negative impact on the 
health of both the fish and their predators (Elgarahy et al., 2021). 

Fig. 1. Various categories of dyes and their possible industrial applications.  
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Humans and other mammals can be exposed to azo dyes in industrial 
effluents through oral ingestion or direct skin contact (Manickam and 
Vijay, 2021). Intestinal microflora in the human gut converts azo dyes 
into toxic amino acids, which have a negative impact on various tissues 
in the human body (Feng et al., 2012). Furthermore, bacteria cultured 
from human skin were able to degrade azo dyes and produce carcino-
genic amines (Kishor et al., 2021). Owing to the large number of textile 
industries and the vast amounts of wastewater containing dyes, appro-
priate and effective management techniques are necessary in order to 
prevent the contamination of ecosystems and to increase sustainability. 
However, the presence of other inorganic and organic constituents, their 
toxicity, as well as the relevant environmental discharge levels, must be 
taken into consideration in choosing the most suitable treatment tech-
nology (Lellis et al., 2019; Li et al., 2022). 

2.1. Impact of textile dyes on aquatic and terrestrial environments 

Despite the fact that water covers more than 71% of the earth’s 
surface, one of the most important issues confronting humanity today is 
a lack of pure, high-quality drinking water. The demand for pure 
drinking water is increasing at an alarming rate, with estimates indi-
cating that agriculture, industry, and households use 70%, 19%, and 
11% of available water, respectively (Gupta et al., 2015; Chen et al., 
2021a, 2021b). The textile industry contributes significantly to the 
deterioration of water quality, which will contaminate nature indefi-
nitely and humans have interacted with natural habitats negatively 
(Fig. 2) by depositing contaminants deposition in terrestrial habitats and 
aquatic ecosystems (Soni et al., 2021). 

Massive amounts of treated or untreated effluent containing azo dyes 
and other organic pollutants are disposed of by the textile industry. 
However, because azo dyes degrade prior to or after disposal, treated 
effluents contain amino acids that are likely more toxic than their raw 
substances, whereas untreated wastewater has a wide range of negative 

impacts on aquatic environments and living organisms (Khalaj et al., 
2018; Mudhoo et al., 2020). Textile dyes that are discharged into aquatic 
ecosystems have a negative impact on aquatic flora (Fig. 2). The more 
visible natural issue with dye is the absorption and reflection of sunlight 
into water. It prevents light from entering the photic zone of the aquatic 
environment (Liang et al., 2017). As a result, there are significant 
ecological consequences, such as changes in the nature of aquatic eco-
systems and decreased photosynthesis when compared to aquatic 
vegetation (Khan et al., 2015). Furthermore, because these waste liquids 
can cause allergies, dermatitis, skin irritations, malignancies, and mu-
tations in humans, they can cause a variety of serious problems, 
including deterioration of water quality (odor and color) thereby 
rendering it toxic (Sarvajith et al., 2018). While a high concentration of 
textile dyes in water depletes oxygen levels, blocks sunlight, and impairs 
the biological activity of aquatic flora and fauna (Ghaedi et al., 2015). 
Furthermore, due to their resistance to conventional physicochemical 
degradation and lack of biodegradability, 60–70% of azo dyes are 
poisonous, carcinogenic, and resistant to standard treatment techniques 
(Rawat et al., 2018). This interfered with photosynthesis in marine 
plants by causing eutrophication as a result of the uncontrolled release 
of mineral elements resulting in long-term hazards. 

Fish and other aquatic organisms which are a major source of pro-
tein, can cause symptoms such as cramps, fever and hypertension if they 
are consumed by humans whilst retaining dyes (Amer et al., 2022; 
Sharma et al., 2022). The presence of dyes and textile pigments in 
wastewater, on the other hand, causes it to be highly colored, with a 
variable pH and high levels of biological oxygen demand (BOD), 
chemical oxygen demand (COD), total organic carbon (TOC), and sus-
pended solids. These suspended solids obstruct the flow of water 
through the fish’s gills, preventing gas exchange and potentially 
resulting in a decreased growth rate or death (Berradi et al., 2019). 
Furthermore, chronic exposure to textile effluents reduced fish feed 
consumption, resulting in a lower protein, carbohydrate and lipid 

Fig. 2. Ecotoxicological impacts of dye-containing textile wastewater on the environment and living microorganisms.  
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content as well as a lower growth rate (Almroth et al., 2021). The 
reactive azo dyes can induce genotoxic effects in adult fish by increasing 
the rate of erythrocytic micronuclei formation in a dose- and 
time-dependent manner, while in fingerlings they increased the gener-
ation of gill micronuclei in a time-dependent manner (Zheng et al., 
2021; Sharma et al., 2022). Due to the hypoxic negative effects on their 
immune system and physiological responses, fish are susceptible to 
various diseases (Fig. 3). As a result, contaminated fish have a significant 
impact on human health (Zheng et al., 2021). 

Natural regulating processes can no longer compensate for bacterial 
oxygen consumption when organic matter, including dyes and pigments, 
is discharged into receiving media via textile finishing effluents (Wan 
et al., 2017). This can lead to under-oxygenation in stagnant aquatic 
environments, where bacteria decompose 7–8 mg of organic matter, 
which is enough to deplete the amount of oxygen in one liter of water 
(Lim et al., 2010). Organic matter agglomeration in watercourses results 
in an unpleasant taste, bacterial multiplication, pestilential odors, and 
erroneous coloration (Khattab et al., 2018). Color was detected with the 
naked eye from a dye mass concentration of 5 g/L (Lim et al., 2010). 
Apart from their unsightly appearance, coloring chemicals can interfere 
with light transmission in water, preventing aquatic plants from suc-
cessful photosynthesis (Cardoso et al., 2012). Synthetic organic dyes are 
chemicals that cannot be purified using standard biological degradation 
processes (Allaoui et al., 2016). Unsaturated molecules are less persis-
tent than saturated compounds because their chemical reactivity is 
strongly related to their persistence. The number of substituents in-
creases the durability of aromatic compounds, whereas the presence of 
halogen substituents increases the persistence of dyes with alkyl groups 
(Lim et al., 2010). 

Microalgae play an important role in aquatic ecosystems as primary 
producers which are both an economically and ecologically beneficial 
species. However, dye contamination inhibits microalgal growth and 
disrupts trophic transmission of energy and nutrients in aquatic eco-
systems (Fig. 2). The large amount of textile dyes released into rivers, 
lakes, oceans, and seas has an effect on several parameters of algal 
growth, including pigment, protein, and other nutrients. Because algae 

are more susceptible to contaminants than other aquatic species, they 
are an excellent indicator of pollution in toxicological investigations 
(Sharma et al., 2021). Methylene Blue is a widely used cationic dye in a 
variety of textile industries, and it produces potentially carcinogenic 
aromatic amines such as benzidine and methylene. As a result, the 
toxicity of Methylene Blue was investigated on the microalgae Spirulina 
platensis and Chlorella vulgaris, which were selected based on their 
nutritional, economic, and ecological values (Ali and Saleh, 2012). 
S. platensis and C. vulgaris were exposed to varying doses of Methylene 
Blue dye, which resulted in a concentration-dependent decrease in 
specific growth rate, protein, and pigment content. As well, Methylene 
Blue inhibits the synthesis of chlorophyll after dye exposure and 
consequently reduces their development and photosynthetic rate (Ali 
and Saleh, 2012). 

Aquatic macrophytes are being used to assess the phytotoxicity of 
textile dyes as a natural ecological marker. Numerous metrics are used 
to determine a plant’s vigorous growth, including its dry weight, num-
ber of fronds, total frond area, and chlorophyll content (Colin et al., 
2016; Singh et al., 2021). All of the macrophyte’s parameters are 
changing as a result of the toxicity of textile dyes (Fig. 2). Numerous 
studies have established that dye has a significant effect on the rate of 
development and inhibits the growth of aquatic macrophytes (Lobiuc 
et al., 2018; Hocini et al., 2019; Adomas et al., 2020; Rápó et al., 2020; 
Singh et al., 2021). This is due to oxidative stress or a change in the 
photosystem of the plant as a result of decreased electron transport in 
the chloroplasts (Sree et al., 2015). Lemna minor is a critical component 
of the food chain. Therefore, a study was conducted to determine the 
effect of Congo Red and Gentian Violet dyes on the biosynthesis of 
biogenic amines by L. minor (Adomas et al., 2020). Clearly, these dyes 
inhibited L. minor growth, biomass production, and chlorophyll 
biosynthesis. In addition, Gentian Violet was more lethal than Congo 
Red because it disrupted the biosynthetic pathway for biogenic amines. 
The results indicate that decarboxylase activity and biogenic amine 
concentrations are sensitive and early indicators of these textile dyes’ 
phytotoxic effects on L. minor (Adomas et al., 2020). 

Textile dyes and/or their effluents alter soil chemistry and disrupt 

Fig. 3. Impact of toxic dye-containing wastewater on aquatic flora such as fish and related various diseases.  
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the balance of soil microbial flora. These organic pollutants also have a 
negative impact on plant flowering and germination (Fig. 2). The per-
centage of seed germination, as well as seedling height and survival, are 
considered to be the primary indicators of a plant’s growth and health 
following exposure to textile dyes (Arshad et al., 2020). Additionally, 
growing plants synthesize dry matter as evidenced by their healthy and 
green shoots, which indicate a high chlorophyll content and an active 
photosynthesis process. Thus, the higher the concentration of solids 
containing dyes in industrial effluents, the more detrimental effects on 
plant growth occur (Zou et al., 2019). Increased solids concentration in 
polluted wastewater also depletes the dissolved oxygen required by 
seedlings and disrupts the seeds’ osmotic balance (Hassan and Carr, 
2018). Furthermore, increased dissolved solids concentrations deplete 
the chlorophyll content of plants. As a result, decreased chlorophyll 
levels have an effect on the photosynthetic process, slow plant growth, 
and reduce the accumulation of plant dry matter (Sharma et al., 2020) as 
given in Fig. 2. It has been reported that abscisic acid in high concen-
trations degrades chlorophyll and inhibits plant growth by impairing the 
synthesis of new chlorophyll (Zhu et al., 2017). Additionally, textile dye 
effluents can cause an increase in proline accumulation in plants, indi-
cating that the dyes are causing stress (Ebency et al., 2013). Micronu-
cleus and chromosomal aberrations are among the genotoxic effects of 
industrial effluents containing azo dyes on the seeds of Allium cepa. After 
exposure to low concentrations of the Black Dye Commercial Product, 
meristematic cells of A. cepa develop chromosomal aberrations, micro-
nuclei, and cell death (Ventura-Camargo et al., 2011). 

2.2. Impact of textile dyes on human health 

Textile dyes, which are highly toxic and potentially carcinogenic, 

have been linked to a variety of human and animal diseases (Tounsadi 
et al., 2020; Jin et al., 2021). Textile dyes can cause diseases from 
dermatitis to problems with the central nervous system (Fig. 4). These 
problems may be caused by the substitution of enzyme cofactors, which 
results in the inactivation of the enzymes themselves (Wu et al., 2021). 
Ingestion or inhalation of textile dyes can cause skin and eye irritation, 
especially if they are exposed to dust (Clark, 2011). Workers who handle 
reactive dyes are at risk of developing allergic reactions such as contact 
dermatitis, allergic conjunctivitis, rhinitis, and occupational asthma 
(Hanger, 2003). As depicted in Fig. 5, Immunoglobulin E (IgE) anti-
bodies that bind to histamine are produced when a conjugate of human 
serum albumin and the reactive dye is formed, acting as an antigen. 

The textile industry is exposed to potentially toxic substances, some 
of which may interfere with ovulation and spermatogenesis (Suryavathi 
et al., 2005). Because of their widespread use in the textile, paper, and 
leather industries, azo dyes derived from benzidine and its derivatives 
have been thoroughly investigated for their toxicity, which has been 
linked to human bladder cancer (Tounsadi et al., 2020). In mammals, 
intestinal microflora metabolize azo dyes to their parent amines, which 
are easily absorbed by the gut, and their presence in human and animal 
urine has been documented (Amin et al., 2016). Textile dyes such as 
Reactive Green 19, Disperse Red 1, and Reactive Blue 2 all have a 
long-term genotoxic effect on human health. Reactive Green 19 was 
found to be genotoxic in a dose-dependent manner, whereas Reactive 
Blue 2 and Disperse Red 1 were not (Leme et al., 2015). 

Due to the widespread use of dyes, they can be detected in the 
environment and accumulate physiologically along the food chain in 
freshwater flora such as fish and algae (Fig. 2) as reported by Hossain 
et al. (2018). It has been reported that toxic levels of organic compounds 
in humans are 1000 times higher than their initial concentrations in 

Fig. 4. Negative impacts of textile dyes on human health from dermatitis to central nervous system.  
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water (Korpi et al., 2009). During water treatment, chlorine reacts with 
organic compounds to form trihalomethanes, which are chlorination 
byproducts used to remove harmful microorganisms (Zhao et al., 2017). 
However, long-term exposure to these compounds is harmful to human 
health, including bladder cancer, colon cancer, and colorectal cancer, as 
well as human immunity (Tounsadi et al., 2020). 

Several dyes, particularly azo dyes, have mutagenic potential. In this 
regard, Sudan I, an azo-lipophilic dye used in the textile and food in-
dustries, was discovered to be enzymatically converted into carcino-
genic aromatic amines by the action of intestinal microorganisms. Both 
the dye and its metabolites have the potential to cause cancer (Piąt-
kowska et al., 2018). The Disperse Red 1 dye was also found to be 
mutagenic in human hepatoma (HepG2) cells and human lymphocytes 
due to its ability to increase the frequency of micronuclei, which is 
indicative of mutagenic activity at the chromosome level (Will et al., 
2016). Furthermore, the Disperse Orange 1 dye causes DNA damage by 
causing base-pair replacement and frameshift mutations that change the 
reading frame (Chequer et al., 2009). When Disperse Orange 1 dye 
comes into contact with HepG2 cells, it has a cytotoxic effect, causing 
apoptosis (Ferraz et al., 2011). Direct Blue 14 dye was shown to form a 
carcinogenic amine when exposed to bacterial species found on human 
skin, whereas other dyes, such as Disperse Yellow 7, have been degraded 
in natural waterways, yielding amines, which are known carcinogenic 
agents (Balakrishnan et al., 2016). 

Azure B (the major metabolite of Methylene Blue) is a cationic dye 
that can intercalate with the helical structure of DNA and duplex RNA 
(Haq and Raj, 2018). This dye may also be partitioned to the lipid 
membrane of animal cells, where it can cause harm by acting as a sig-
nificant reversible inhibitor of monoamine oxidase A, an intracellular 
enzyme of the central nervous system that is important in human 
behavior (Li et al., 2014). The ability of Azure B to inhibit enzymes such 
as glutathione reductase, which is essential for cellular redox equilib-
rium, was also investigated (Couto et al., 2016). Triphenylmethane dyes, 
on the other hand such as Basic Red 9, which are used in the textile, 
leather, paper, and ink industries, are carcinogenic to humans because 

they produce aromatic amines during dye degradation under anaerobic 
conditions, resulting in allergic dermatitis, skin irritation, mutations, 
and cancer (Sivarajasekar and Baskar, 2014). Crystal Violet (triaryl-
methane dye) causes mitotic poisoning, resulting in chromosomal 
damage and abnormal metaphase accumulation (Mani and Bharagava, 
2016). This highly carcinogenic substance has been linked to reticular 
cell sarcoma in a variety of organs, including the vagina and bladder 
(Lellis et al., 2019). Furthermore, Crystal Violet has the potential to 
cause chemical cystitis, skin and digestive system irritation, as well as 
respiratory and renal failure in humans (Mani and Bharagava, 2016). 

More than 100 of the 4000 dyes tested for toxicity are still on the 
market despite the prohibited agreements, with the potential to create 
carcinogenic amines (Lacasse and Baumann, 2012). Small-scale textile 
factories around the world that secretly dump poisonous dyes into wa-
terways because of export demand for cheap labor are under threat. 
There are opportunities offered by bioremediation technologies that are 
closely linked with a commitment to sustainable development in the face 
of this complex problem, which poses profound risks to ecosystems and 
humans alike. In other words, eco-friendly economic growth and 
improved human well-being are both promoted by bioremediation 
technologies. 

3. Various technologies and methodologies used for the 
treatment of textile dye-containing wastewater 

Obtaining clean drinking water is one of the major global concerns 
influencing people today, owing to anthropogenic activities and inse-
cure access. By 2030, approximately 47% of the world’s population will 
face the challenge of clean water scarcity (Islam et al., 2021). Therefore, 
the case for eliminating microorganisms and organic pollutants such as 
textile dyes is gaining popularity around the world in order to achieve 
the goal of having safe and clean drinking water. Unfortunately, for most 
middle- and low-income countries the resources needed for cleaning 
water are expensive, and therefore not feasible. The textile industry 
contributes to global economic growth, with China, the European Union, 

Fig. 5. The proposed mechanism of allergic reactions as a consequence of human serum albumin conjugation with textile dyes such as reactive dyes, resulting in 
histamine and inflammatory mediators production. 
Adopted from Hanger (2003). 
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India, and the United States being the largest exporters of all textile 
types (Atkar et al., 2021; Darwesh et al., 2021). China has emerged as a 
major textile producer, accounting for nearly 55% of global textile 
consumption (Islam et al., 2021). Over 10,000 different synthetic dyes 
and pigments are widely used in the textile and paper industries, which 
has a significant negative impact on both the environment and human 
health (Al-Tohamy et al., 2020a, 2020b; Ali et al., 2021a, 2022). 

Cellulosic materials (for example, cotton, rayon, and linen derived from 
plants), protein fabrics such as silk, wool, and mohair, and synthetic 
fabrics such as nylon, acrylic, and polyester can all be produced in textile 
factories using wet and dry methods (Ali et al., 2021b, 2021c). The 
washing cycle is the final stage in the textile coloring process, resulting 
in the elimination of excess color and pigments that are discharged into 
water, thereby adding to water pollution (Tounsadi et al., 2020; Wu 

Fig. 6. Physical approaches for textile dye wastewater treatment, including dye adsorption with activated carbon (A), ion exchange (B), and membrane filtration (C).  
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et al., 2021) as it contains dyes with various chromophoric groups that 
are extremely toxic and potentially carcinogenic (Ali et al., 2020, 2021d, 
2021e). Furthermore, textile dyes discharged into water remain in the 
environment and ground water resources for long periods of time. As a 
result, developing a process that can be sustained is critical to advancing 
color removal technology. 

There is still no international consensus on the release of dye- 
containing wastewater and their textile effluents, including azo dyes, 
in terms of legislation. Generally, restrictions on azo dyes are not 
specified separately from those on physical and chemical characteristics 
of treated wastewater. Based on the wastewater properties, it can be 
treated physically, chemically, biologically, or utilizing a combination 
of these methods. The following are some of the most commonly used 
approaches. 

3.1. Physical approaches for textile dye wastewater treatment 

Based on the mass transfer mechanism, various physical approaches 
such as adsorption, ion exchange, and membrane filtration are used to 
treat dye-containing wastewater (Fig. 6), with a very high removal ef-
ficiency ranging from 85% to 99% (Samsami et al., 2020). Physical 
approaches have numerous advantages, including a simple design, ease 
of operation, low cost, fewer chemical requirements, and the presence of 
toxic substances has no inhibitory effect (Cao et al., 2021; Behera et al., 
2021). However, these methods are frequently not preferred due to a 
number of drawbacks, including toxic byproducts and sludge produc-
tion, as well as limited applicability (Akpomie and Conradie, 2020). 
Furthermore, high temperatures, chemical oxygen demand (COD), bio-
logical oxygen demand (BOD), pH, color, and heavy metals frequently 
hinder their application in textile wastewater treatment. 

3.1.1. Adsorption 
Adsorption is a surface-based process in which adsorbed molecules 

or ions are attracted to a solid adsorbent surface (Fig. 6A). There are two 
types of adsorption: physisorption and chemisorption. This classification 
is based on the manner by which the dye molecule is adsorbed onto the 
adsorbent surface (Burakov et al., 2018). In the adsorption of dye mol-
ecules, several forces such as van der wall forces, hydrophobic and 
electrostatic interactions, and hydrogen bonding may exist (Mudhoo 
et al., 2020). The advantages of the adsorption process include reus-
ability of adsorbents, high efficiency, and a short time required for dye 
removal from wastewater (Li et al., 2019a; Akpomie and Conradie, 
2020). The concept of adsorption is based on adsorbents, which 
commonly have porous structures that increase the total exposed surface 
area required for the fast and efficient adsorption of dye molecules from 
wastewater (Samsami et al., 2020; Abu-Nada et al., 2021). Several ad-
sorbents, including zeolites, alumina, silica gel, and activated carbon, 
have been widely used for dye removal from wastewater. The activated 
carbon, on the other hand, is widely used adsorbent on an industrial 
scale (Jadhav and Jadhav, 2021). The Biopolymer/ZSM–5 zeolite 
adsorbent was used to treat dye-containing wastewater such as Crystal 
Violet (15 mg/L; pH 7.5), Basic Fuchsin (15 mg/L; pH 9.0), and Meth-
ylene Blue (15 mg/L; pH 8.0), with decolorization percentages of 75.3, 
81.2, and 86.6, respectively (Brião et al., 2018). Using ZnO@Ze com-
posite particles as an adsorbent at a dye concentration of 25–500 mg/L 
and an adsorbent dose range of 0.025–0.1 g/L, up to 90% Congo Red 
decolorization was achieved (Madan et al., 2019). 

3.1.2. Ion exchange 
The ion exchange method has recently received great attention in the 

treatment of textile wastewater and effluents due to its advantages, such 
as low cost, regeneration, simplicity, flexibility, and high efficiency. 
Effective separation in the ion exchange method is achieved by gener-
ating strong bonds between the resins used in a packed bed reactor and 
the solutes (Akpomie and Conradie, 2020). The mechanism of ion ex-
change in dye removal, as shown in Fig. 6B, is based on strong 

interactions between the functional groups of resins and the charges on 
dye molecules (Ahmad et al., 2015). At a dye concentration of 10− 2 M, 
the anion-exchange resin (Amberlite IRA 400) was used to remove Acid 
Orange 10 from wastewater, achieving a dye removal of 97% (Marin 
et al., 2019), while at a dye concentration of 10–500 mg/L, a resin 
cation exchanger removed 91.7% of Disperse Violet 28 (Bayramoglu 
et al., 2020). 

3.1.3. Membrane filtration 
Membrane filtration, as one of the cutting-edge physical technolo-

gies, is used for the treatment of dye-containing wastewater. Because the 
membranes used in this method have small pores, solutes larger than 
these pores become trapped behind them, resulting in a dye-free solution 
(Fig. 6C). Although this technique is simple and effective, the mem-
branes need periodic replacement (Samsami et al., 2020). Micro-
filtration (MF) is a membrane-based filtration process that uses a typical 
membrane with pore sizes ranging from 0.1 to 10 µm to separate sus-
pended particles and dyes from wastewater (Cheryan, 1998). Nano-
filtration (NF) is another advanced membrane technology that has 
recently been used for the treatment of dye-containing wastewater, with 
typical membranes ranging in diameter from 0.5 to 0.2 nm (Behera 
et al., 2021). As a result, nanofiltration technology can separate dye 
molecules from wastewater solutions using size and electrostatic 
repulsion mechanisms (Dasgupta et al., 2015a). Ultrafiltration (UF) 
membranes can also be used to remove organic dyes from textile 
wastewater, with membrane diameters ranging from 0.1 to 0.001 µm. 
Although ultrafiltration is less expensive and requires less pressure than 
nanofiltration, the separation rate is low due to the large membrane pore 
size (Dasgupta et al., 2015b). Reverse osmosis (RO) is a membrane 
filtration process that has significant industrial applications in the 
treatment of dye-containing wastewater and thus provides high quality 
water (Wang et al., 2020a, 2020b). The advantages of RO technology 
include the ability to achieve concentration and separation with no state 
change or thermal energy (Liang et al., 2021). 

3.2. Chemical approaches for textile dye wastewater treatment 

Chemical approaches such as coagulation-flocculation, electro-
chemical, and advanced oxidation processes are used to treat dye- 
containing wastewater (Fig. 7). Except for electrochemical technology, 
these methods are typically more expensive than physical and biological 
approaches. Furthermore, the main disadvantages for commercial use of 
chemical approaches for dye removal from textile wastewater are the 
high electrical energy requirements, large amounts of used chemicals, 
and the requirement of proper equipment (Kishor et al., 2021). The use 
of chemical approaches for dye removal also pose additional challenges 
due to the toxic metabolites and by-products formed during the treat-
ment process (Katheresan et al., 2018; Wang et al., 2020a, 2020b). 

3.2.1. Coagulation-flocculation 
Wastewater typically contains a high concentration of impurities and 

toxins. Hence, it can be treated prior disposal with coagulants. In this 
treatment technique, metal salts and polymers can be used as co-
agulants, while flocculants are polymers that increase the aggregation of 
flocs so that they can be separated more easily (Al-Mutairi, 2006). The 
coagulants are added during the vigorous mixing stage. The charge of 
finely dispersed particles is then neutralized or reduced as a result of the 
presence of coagulants. Finally, the flocculants are mixed with the fine 
particles to form large particles that can be easily separated by sedi-
mentation (Mahmudabadi et al., 2018). Fig. 7A illustrates the schematic 
diagram of coagulation-flocculation approach for the treatment of 
dye-containing wastewater. Tamarindus indica and Azadirachta indica 
have been reported as highly effective natural coagulants for dye 
removal from industrial wastewater effluents (Mathuram et al., 2018). 
In the coagulation-flocculation approach, several chemical coagulants 
were also used. Iron coagulants such as ferric chloride, ferrous sulfate, 
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and ferric chloride sulfate are usually added to maintain the purity of the 
removal system, while other chemical coagulants such as magnesium 
carbonate and hydrated lime are required for adsorbing azo dyes and 
their byproducts (Li et al., 2018; Dotto et al., 2019; Badawi and Zaher, 
2021). When a coagulant is applied to a solution and vigorously mixed, 
it precipitates, trapping organic contaminants and impurities. These 
precipitated compounds can then be filtered physically to provide 
treated clean water. The use of laterite soil as a strong flocculant and 
coagulant, rich in iron and aluminum, significantly reduced Acid Orange 
7 up to 98% (Lau et al., 2014). This approach is both cost effective and 
essential for the treatment of dye-containing textile wastewater. How-
ever, it has the disadvantages of being pH dependent and producing 
concentrated sludge (Samsami et al., 2020). 

3.2.2. Advanced oxidation approaches 
Several technologies for the treatment of dye-containing wastewater 

have been investigated. Advanced oxidation, one of these approaches, 
has been used in this regard, and its hypothesis is based on the in-situ 
generation of hydroxyl radicals (OH•), which are powerful oxidizing 
agents used to treat dye-containing wastewater (Rahmani et al., 2019). 
Photocatalysis, Fenton, photo-Fenton, ozonation, and electrochemical 
oxidation processes are examples of advanced oxidation methods. These 
methods are capable of removing dye under harsh conditions quickly 
and without the formation of sludge. They do, however, have the dis-
advantages of being expensive, pH dependent, and producing toxic 
by-products (Zhao et al., 2022). 

The production of OH• alongside with textile wastewater degrada-
tion have been studied extensively using the photocatalysis process (Li 
et al., 2020; Abdel-Moniem et al., 2021). The mechanism of the OH•

Fig. 7. Chemical approaches for textile dye wastewater treatment, including coagulation-flocculation (A), photocatalytic degradation of toxic dye molecules (B), 
photo-Fenton (C), electro-Fenton (D), electrocoagulation (E), and anodic oxidation approach (F). 
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generation for photocatalytic degradation of toxic dye molecules is 
depicted in Fig. 7B. Nanoparticles such as zinc oxide and titanium 
peroxide are used as photocatalytic agents to generate free radicals and 
holes, both of which are required for dye degradation via photocatalysis 
(Siwińska-Stefańska et al., 2018). By oxidizing the organic dye mole-
cules, the holes produced mineralization products and OH•, while 
electrons as reducing agents produced superoxide (Hassanshahi and 
Karimi-Jashni, 2018). 

Fenton and photo-Fenton processes are two of the most widely used 
advanced oxidation methods for the degradation of organic pollutants in 
wastewater, such as dye molecules (Xiang et al., 2020; Zhong et al., 
2021) as given in Fig. 7C. This approach is based on the presence of a 
Fenton’s reagent (H2O2) and soluble iron (II) salt mixture (Saratale 
et al., 2019). The formation of OH• is the first stage in the Fenton method 
(Eq. 1), and it occurs in the photo-Fenton process, as shown in the 
following Eqs. (2 and 3). To treat dye-containing wastewater, the OH•

radical can also be formed during the ozonation process (Gagné et al., 
2008; He et al., 2021). This procedure is carried out in three stages: 
initiation (Eq. 4), propagation (Eqs. 5 and 6), and termination (Eqs. 7 
and 8). Electrochemical technology, a new advanced oxidation 
approach for the treatment of dye-containing wastewater, has recently 
been developed (Li et al., 2019a, 2019b, 2019c, 2019d, 2019e). Pho-
toelectrocatalysis produces OH• radicals at the anode surface in elec-
trochemical technology. OH• radicals, on the other hand, are produced 
in anodic oxidation via electro-Fenton or sonoelectrolysis (Mojiri et al., 
2018).  

Fe2+ + H2O2 → OH• + Fe3+ + OH-                                                  (1)  

UV + H2O2 → 2OH• (2)  

Fe3+ + UV + H2O → OH• + Fe2+ + H-                                            (3)  

H2O + O3 +hʋ → O2 + 2OH• (4)  

OH• + O3 → O2 + HO2
• (5)  

HO2
• + O3 → 2O2 + OH• (6)  

HO2
• + OH• → O2 + H2O                                                               (7)  

2OH• → H2O2                                                                                (8)  

3.2.3. Electrochemical approaches 
In recent years, three techniques have been used to remove organic 

pollutants from wastewater, such as textile dyes. Electrocoagulation, 
electro-Fenton, and anodic oxidation are three of these methods. Elec-
trochemical treatment technologies do not require the addition of 
chemicals and produce no sludge. However, the disadvantages of such 
approaches include high electricity costs and being less effective than 
other treatment technologies (Palas et al., 2019; Yadav et al., 2019; 
Dória et al., 2020; Zhang et al., 2021). Organic pollutants can be 
removed using two combined processes of oxidation and coagulation in 
the electro-Fenton, which is considered one of the most widely advanced 
oxidation approaches used in practice (Fig. 7D). This method is distin-
guished by the absence of toxic byproducts, the preservation of the 
environment, and the use of fewer chemicals (Khataee et al., 2009). The 
electrocoagulation approach employs two metallic electrodes for direct 
power supply as well as the formation of in-situ coagulant particles, and 
the electrocoagulation mechanism employed for the treatment of 
dye-containing wastewater, as previously reported by Sharma and 
Verma (2017), is depicted in Fig. 7E. The iron metal anode serves as a 
catalyst and coagulant agent, while the cathode generates hydrogen gas. 
This method is distinguished by its low sludge production, low cost, ease 
of operation, and lack of chemical requirements (Hamad et al., 2018; 
Samsami et al., 2020). Anodic oxidation (Fig. 7F) is another type of 
electrochemical techniques that is used to remove organic pollutants 

from wastewater via direct/indirect processes (Montañés et al., 2020). In 
the direct oxidation process, organic compounds are adsorbed at the 
anode’s surface and then degraded by the anodic electron transfer 
mechanism. Strong oxidants, on the other hand, such as O3 and H2O2, 
are produced electrochemically via the indirect oxidation process. This 
method is distinguished by the efficient removal of dyes and other 
organic pollutants. However, it has a number of drawbacks, including 
high operational costs and low stability (Hamad et al., 2018). 

3.3. Biological approaches for textile dye wastewater treatment 

Biological approaches for the treatment of dye-containing waste-
water are more promising than physical and chemical techniques 
because they are more easily applicable, generate less sludge, require 
fewer chemical reagents, are less expensive, have energy-saving fea-
tures, are more environmentally safe, and the byproducts generated 
during microbial metabolic activity are non-toxic (Ali et al., 2019, 2020, 
2021d, 2022). Furthermore, biological approaches are economically 
feasible for use in developing countries and result in complete dye 
mineralization (Coria-Oriundo et al., 2021). The primary goal of bio-
logical treatment is to convert recalcitrant organic dyes into non-toxic 
products. The main advantage of the biological treatment is the use of 
microorganisms with a high biodegradable ability where dye-containing 
wastewater, either singly or in consortia is concerned (Liu et al., 2018). 
Adsorption and degradation are the two main processes used for dye 
decolorization treatment of textile wastewater (Popli and Patel, 2015). 
These processes take place under aerobic or anaerobic conditions, as the 
products of aerobic treatment are biomass, carbon dioxide, and water, 
whereas the main product of anaerobic treatment is methane (Kamali 
and Khodaparast, 2015; Chen et al., 2021a, 2021b). Bacteria, algae, 
yeast, and fungi, as well as enzyme-based systems, are all viable bio-
logical candidates for the treatment of textile dye wastewater, con-
verting dye molecules into non-toxic products (Al-Tohamy et al., 2020a; 
Khan et al., 2020; Coria-Oriundo et al., 2021). The attractive force 
creation property of the microbial cell wall and the azo dye present in 
wastewater is attributed to the various groups of microbial cell wall 
components such as amino, carboxyl, hydroxyl, phosphate, and other 
charged groups (Jafari et al., 2014). 

3.3.1. Enzyme-assisted degradation of dye-containing wastewater 
Due to their high cost, pure enzymes are not the first choice for the 

treatment of dye-containing wastewater. Industrial enzymes, on the 
other hand, stand out because of their low cost, efficiency, reliability, 
and they are available in liquid form (Dawkar et al., 2010; Li et al., 
2019a, 2019b, 2019c, 2019d, 2019e). Laccases and azo reductases, for 
example, are effective at degrading azo dye-containing wastewater, 
converting such complex organic pollutants into simple products, and 
removing them from textile wastewater via flocculation (Samsami et al., 
2020). As a result, enzymes are widely used in the chemical and 
biotechnological industries. However, one of the most difficult aspects 
of enzymatic degradation is biocatalyst deactivation due to denaturation 
(Jun et al., 2019). Several studies have recently been carried out to 
determine the activity of various enzymes during the degradation of azo 
dyes (Riegas-Villalobos et al., 2020), out of these the oxidoreductase 
enzyme class is the one that has been extensively studied. Peroxidase 
enzymes are the most widely available against a wide range of industrial 
dyes, with higher temperature tolerance and a wider operating pH range 
(Mishra and Maiti, 2019). 

Enzyme immobilization emerges as a promising aspect in textile dye 
biodegradation, with immobilization strategies making significant 
progress, improving enzyme performance in various applications (Amer 
et al., 2022; Basak et al., 2019). Cross-linking is a commonly used 
immobilization tool due to its compatibility and efficacy with almost 
any type of enzyme (Matto and Husain, 2009; Buscio et al., 2016). To 
immobilize dye-degrading enzymes, a variety of products, including 
charcoal or biochar pellets and calcium alginate gel capsules, can be 
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used. Malani et al. (2013) used immobilized horse radish peroxidase 
(HRP) and a sono-enzymatic combined treatment approach to improve 
azo dye (e.g., Acid Red) decolorization, achieving up to 61%. Further-
more, an azoreductase-glucose-1-dehydrogenase enzyme system with 
85% azoreductase activity has been developed for the degradation of 
azo dyes (Yang et al., 2013). Misra et al. (2014) investigated enzyme 
activity during Acid Red-1 degradation by immobilizing the laccase 
enzyme on epoxy-functionalized polyether sulfone beads, which 
degraded 88% of the dye at a concentration of 10 mg dye/L in 15 days. 
Furthermore, Bilal et al. (2017) investigated the dye decolorization ef-
ficiency of chitosan encapsulated HRP in a packed bed reactor, finding 
decolorization of Remazol Brilliant Blue R, Crystal Violet, Congo Red, 
and Reactive Black-5 of 82.17%, 87.43%, 94.35%, and 97.82%, 
respectively. The enzyme’s resistance to heavy metal inhibition was also 
improved by this immobilization system. Moreover, Bilal et al. (2019) 
investigated the degradation of the Reactive Blue 19 dye by HRP 
immobilized on an eco-friendly support material made of agar-
ose–chitosan hydrogel. Under alkaline conditions, the immobilized 
enzyme system had 1.6- and 400-fold greater catalytic activity than the 
free/soluble enzyme system at 50 and 70 ◦C, respectively. Finally, ionic 
liquids can be used to improve dye degradation, as shown by Indigo 
Carmine via laccase, which demonstrated 82% degradation in 30 min 
(Bento et al., 2020). 

Entrapping enzymes on a suitable matrix can improve dye treatment 
efficacy as well as biodegradability and stability. In contrast, the applied 
enzyme activity varies depending on the enzyme’s class, source, and 
substrate. Furthermore, the efficiency of dye decolorization demon-
strated by immobilized enzymes was found to be greater than that of 
soluble enzymes, despite the fact that immobilization allows the enzyme 
to be reused multiple times (Britos et al., 2018). Furthermore, temper-
ature, pH, salt concentration, co-substrate, and electron donor all have 
an impact on the dye decolorization process, which must be optimized in 
order to achieve a high decolorization response. However, single en-
zymes such as manganese peroxidase, azoreductase, and other related 
enzymes can generate intermediate compounds such as amino acids and 
phenols that are more toxic than the parent dye compounds during the 
dye degradation process (Mishra and Maiti, 2019). A combination of two 
or more oxidoreductase enzymes could be used in this case to convert 
toxic intermediates into insoluble end-products (Mishra and Maiti, 
2019). However, the use of enzymes to decolorize dyes necessitates 
additional research to demonstrate the application of enzyme combi-
nations and to develop a cost-effective method for treating 
dye-containing wastewater. 

3.3.2. Bacteria-assisted degradation of dye-containing wastewater 
Many bacterial species have been shown to be more efficient at 

degrading dye-containing wastewater than other microorganisms (Guo 
et al., 2020; Liu et al., 2021). The efficacy of dye degradation by bacteria 
is determined by the bacteria’s adaptability and ability to degrade dye 
under the prevailing environmental conditions (Chen et al., 2021a, 
2021b). Many bacterial species have been shown to be capable of azo 
dye biodegradation, including Klebsiella, Pseudomonas, Bacillus, Rhodo-
coccus, and Shigella (Ali et al., 2019; Guo et al., 2020; Chen et al., 2021a, 
2021b). The main advantages of using bacteria in dye degradation are 
their ease of cultivation, high specific growth rates when compared to 
other microorganisms as well as their versatile catalytic capability for 
mineralizing azo dyes present in wastewater (Kamali and Khodaparast, 
2015; Mudhoo et al., 2020). As the first stage of the bacterial degrada-
tion mechanism, various bacterial species have used azo reductase en-
zymes to biodegrade azo dyes under aerobic or anaerobic conditions via 
azo bond cleavage (Pearce et al., 2006). 

Table 1 depicts the bacteria-assisted degradation of dye-containing 
wastewater. Bacterial decolorization of azo dyes frequently occurs via 
azo bond reduction under anaerobic conditions, leading to the produc-
tion of colorless amino acids (Brüschweiler and Merlot, 2017). These 
derived compounds, however, are mutagenic and carcinogenic, 

Table 1 
Biodegradation of textile dyes by various microorganisms.  

Microorganism Dye Dye 
removal 
(%) 

References 

Bacteria-based dye 
degradation    

Aeromonas hydrophila Red RBN > 90 Chen et al. (2003) 
Pseudomonas aeruginosa 

NBAR12 
Reactive Blue 
172 

83 Bhatt et al. (2005) 

Enterococcus gallinarum C.I. Direct Black 
38 

53–63 Bafana et al. (2008) 

Micrococcus glutamicus 
NCIM-2168 

C.I. Reactive 
Green 19A 

100 Saratale et al. (2009) 

Pseudomonas sp. SUK1 Reactive Red 2 80 Kalyani et al. (2009) 
Bacillus sp. VUS Navy Blue 2GL ~90 Dawkar et al. (2009) 
Kocuria rosea MTCC 

1532 
Methyl Orange 100 Parshetti et al. 

(2012) 
Proteus mirabilis LAG Reactive Blue 13 87.91 Olukanni et al. 

(2010) 
Lysinibacillus sp. RGS C.I. Remazol Red 100 Saratale et al. (2013) 
Lysinibacillus sp. KMK-A Reactive Orange 

M2R 
98 Chaudhari et al. 

(2013) 
Bacillus cereus Orange II /Acid 

Orange 7 
52.5 Garg, and Tripathi 

(2013) 
Pseudomonas 

extremorientalis 
BU118 

Congo Red 36–94 Neifar et al. (2016) 

Fungi-based dye 
degradation    

Rhizophus arrhizus Remazol 
Brilliant Blue R 

86.9 Aksu and Tezer 
(2000) 

Penicillium oxalicum Reactive Blue 19 91 Zhang et al. (2003) 
Irpex lacteus Reactive Orange 

16 
95 Novotný et al. 

(2004) 
Neurospora crassa Acid Red 57 98.78 Akar et al. (2006) 
Aspergillus sp. Brilliant Green 99.27 Kumar et al. (2012) 
Aspergillus niger Red azo dye 99.69 Mahmoud et al. 

(2017) 
Peroneutypa scoparia Acid Red 97 75 Pandi et al. (2019) 
Yeast-based dye 

degradation    
Phormidium sp. Reactive Black B 60 Ertuğrul et al. 

(2008) 
Galactomyces 

geotrichum 
MTCC1360 

Methyl Red 100 Jadhav et al. (2007) 

Trichosporon beigelii 
NCIM-3326 

Navy Blue HER 100 Saratale et al. (2009) 

Candida tropicalis Acid Blue 93 100 Deivasigamani and 
Das (2011) 

Galactomyces 
geotrichum 
MTCC1360 

Mixture of dyes 88 Waghmode et al. 
(2011) 

Candida krusei Basic Violet 3 100 Deivasigamani and 
Das (2011) 

Trametes trogii 
BAFC463 

Fast Blue RR > 85 Grassi et al. (2011) 

Pichia sp. TCL Acid Red B 90 Qu et al. (2012) 
Magnusiomyces ingens 

LH-F1 
Acid Red B 97.37 Tan et al. (2014) 

Scheffersomyces 
spartinae TLHS-SF1 

Acid Scarlet 3R 98.14 Tan et al. (2016) 

Trichosporon 
akiyoshidainum 
HP2023 

Reactive Black 5 89 Martorell et al. 
(2017) 

Sterigmatomyces 
halophilus SSA1575 

Reactive Black 5 100 Al-Tohamy et al. 
(2020a) 

Algae-based dye 
degradation    

Chlorella vulgaris Remazol 
Brilliant Blue R 

53.2 Aksu and Tezer 
(2005) 

Scenedesmus bijugatus Tartrazine 68 Omar (2008) 
Coelastrella sp. Rhodamine B 80 Baldev et al. (2013) 
Dermatocarpon 

vellereceum 
Navy Blue HE22 95 Kulkarni et al. 

(2018) 
Chara vulgaris L. Methyl Red 70–100 Patil et al. (2015)  
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necessitating an additional aerobic stage of bacterial degradation to 
reduce their toxicity and transform them into environmentally friendly 
compounds (Franca et al., 2020). Decolorization of Reactive Orange 
M2R with Lysinibacillus sp. KMK-A was attributed primarily to azo bond 
reduction and metabolite formation, and thus the rate of dye decolor-
ization can be measured in terms of BOD and COD reduction. These two 
parameters are important for the determination of the organic load and 
the degree of mineralization (Chaudhari et al., 2013). 

Bacteria have demonstrated up to 100% efficiency in dye-containing 
textile wastewater biodegradation, and bacterial consortia frequently 
outperform a single strain in dye removal effectiveness (Liu et al., 2018; 
Ali et al., 2019; Guo et al., 2020). Tony et al. (2009) developed SKBII, a 
bacterial consortium containing five strains of different Bacillus species, 
including, B. megaterium, B. vallismortis, B. cereus, B. pumilus, and 
B. subtilis, that was more effective at dye decolorization than the indi-
vidual strains. Furthermore, Phugare et al. (2011) compared the ability 
of a bacterial consortium containing Pseudomonas aeuroginosa BCH and 
Providencia sp. SDS, isolated from dye-contaminated soil, to degrade Red 
HE3B to individual strains. It was demonstrated that decolorization and 
degradation were much faster in the case of the consortium than in the 
case of individual bacterial strains, and the consortium’s intensive 
metabolic activity resulted in 100% decolorization of 50 mg/L of Red 
HE3B dye within 1 h. Mohanty and Kumar (2021) investigated the 
decolorization of Indanthrene Blue RS using a bacterial consortium BP 
constructed from Bacillus flexus TS8, Proteus mirabilis PMS, and Pseudo-
monas aeruginosa NCH isolated from textile wastewater and 
dye-contaminated soil. In comparison to the individual strains, the BP 
consortium demonstrated improved dye decolorization with an average 
decolorization rate of 11,088 g/h over a 9-hour period, while the 
addition of residual agricultural wastes improved the BP decolorization 
performance. The oxidoreductive enzymes were involved in the overall 
degradation mechanism, with increased intracellular enzyme concen-
trations and non-toxic generated metabolites (Mohanty and Kumar, 
2021). As a result, it can be concluded that a variety of individual 
bacterial strains and bacterial consortia are capable of biodegrading a 
variety of dyes used in textile manufacturing. This environmentally 
friendly approach is promising for dye-containing wastewater treatment 
and may represent a novel and advanced strategy for large-scale dye 
decolorization. 

3.3.3. Fungal-assisted degradation of dye-containing wastewater 
Fungi, through various fungal strains or consortia, play an important 

role in the degradation and mineralization of a wide range of textile 
dyes. The primary advantage of using fungi for dye-containing waste-
water treatment is the ability to accelerate their metabolism in order to 
achieve optimal environmental conditions (Zafiu et al., 2021). Intra-
cellular and extracellular enzymes, such as manganese peroxidase, lac-
case, and lignin peroxidase, can boost their metabolic activity and help 
with the treatment of dye-containing wastewater (Khan et al., 2020). 
Since the early 1990s, the contribution of white-rot fungi to the degra-
dation of recalcitrant organic pollutants, including azo dyes, has been 
revealed due to their non-specific lignin-modifying enzymes (Zafiu 
et al., 2021). Table 1 depicts the fungal-assisted degradation of 
dye-containing wastewater. Phanerochaete chrysosporium can be used to 
degrade a mixture of pollutants from wastewater from textile, pulp, and 
paper industries that contain polycyclic aromatic hydrocarbons (Sen-
thilkumar et al., 2014). After six days of cultivation, Aspergillus niger 
successfully biodegraded Congo Red with a high decolorization effi-
ciency of 97%, demonstrating that only 1.0 g of fresh biomass can 
remove 27% of Congo Red through biosorption, while the biodegrada-
tion process can remove 70% of dye due to the combined action of 
manganese peroxidase, lignin peroxidase, and possibly deaminase 
(Asses et al., 2018). Laccase, a fungal enzyme, has been shown to remove 
70–88% of dye molecules, and in some cases, manganese peroxidase, 
lignin peroxidase, and laccase have been combined to degrade dye 
molecules (Bankole et al., 2018). It has been reported that depending on 

the processing medium, fungi can produce a wide range of oxidative 
enzymes (Noman et al., 2020). 

3.3.4. Yeast-assisted degradation of dye-containing wastewater 
Yeasts have several advantages over filamentous fungi and bacteria, 

when it comes to degrading textile dyes. Due to their rapid growth rates 
and ability to tolerate adverse environmental conditions such as low pH, 
yeasts have the potential to be used as a substitute for the treatment of 
dye-containing wastewater (Khan et al., 2013; Ali et al., 2018, 2020). 
However, only a few reports highlight dyes degradation and removal by 
yeasts (Jamee and Siddique, 2019; Ali et al., 2021a, 2022). Several 
ascomycetous yeast species have been known to degrade dye-containing 
wastewater, including Debaryomyces, Candida, Kluyveromyces, and 
Saccharomyces. Trichosporon and Rhodotorula, on the other hand, are the 
most promising basidiomycetous yeast genera (Samsami et al., 2020; 
Al-Tohamy et al., 2021c). Several yeasts, including Scheffersomyces 
spartinae, Pichia occidentalis, and Sterigmatomyces halophilus, have 
demonstrated the ability to degrade textile dyes, including azo dyes (Tan 
et al., 2016; Al-Tohamy et al., 2020a, 2020b), as well as tolerate harsh 
conditions, such as high salt concentrations in textile wastewater. 
Table 1 depicts the yeast-assisted degradation of dye-containing 
wastewater. Biosorption and reductive azo bond cleavage are the pri-
mary pathways by which yeast strains can remove high concentrations 
of different dyes from wastewater. Yeasts frequently decolorize textile 
dyes such as Remazol Brilliant Blue, Congo Red, Malachite Green, Acid 
Red B, Reactive Black 5, and Rhodamine B (Ertuğrul et al., 2008; 
Aghaie-Khouzani et al., 2012; Al-Tohamy et al., 2020b). 

In terms of dye degradation by yeasts, 12 strains, including Saccha-
romycopsis lipolytica, Saccharomyces uvarum, Saccharomyces cerevisiae, 
and Torulopsis candida, removed the dye Reactive Brilliant Red K-2BP via 
biosorption (Yu and Wen, 2005). Saccharomyces cerevisiae was also 
evaluated for its ability to remove Ramazole Blue, with results indicating 
that it can reduce the color absorbance and COD of real textile waste-
water by 100% and 61.82%, respectively, via biosorption (Mahmoud, 
2016). Ruscasso et al. (2021) investigated the potential use of an Ant-
arctic yeast’s biomass, Debaryomyces hansenii F39A, as a biosorbent for 
the textile dyes Reactive Red 141 and Reactive Blue 19. The obtained 
results showed that the dye concentration dropped dramatically in the 
first 15 min of the operation, while no harmful toxic compound was 
released as a result of adsorption. It can be concluded that using biomass 
from selected yeasts as a biosorbent can be a viable, cost-effective, and 
efficient alternative to using expensive materials like activated carbon 
(Ruscasso et al., 2021). 

3.3.5. Algae-assisted degradation of dye-containing wastewater 
Algae have gained significant interest as bio-coagulants for textile 

dyes biodegradation due to their ideal cell wall properties, large surface, 
high capacity, and affinity for binding (An et al., 2020; Dória et al., 
2020). Under standard atmospheric conditions, algal-based bioprocesses 
are typically simple to operate; they are also environmentally friendly 
and relatively inexpensive when compared to conventional treatment 
methods (Li et al., 2019b, 2019c; Samei et al., 2019). Furthermore, 
unlike bacteria and fungi, which require the addition of carbon and 
other components to remove dyes, algae do not (Omar, 2008). Table 1 
depicts the algae-assisted degradation of dye-containing wastewater. 
Mohan et al. (2002) investigated the ability of Spirogyra to degrade azo 
dyes. El-Sheekh et al. (2009) also investigated Oscillatoria rubescens, 
Lyngbya lagerlerimi, Elkatothrix viridis, Volvox aureus, Nostoc lincki, and 
Chlorella vulgaris for decolorization of Methyl Red, Orange II, and Basic 
Fuchsin, with decolorization performance ranging from 4% to 95%. The 
degradation of algae-based dyes is primarily determined by the algal 
species used, their metabolic activity, and the molecular structures of 
the dyes. According to Abou-El-Souod and El-Sheekh (2016), the 
degradation of Basic Fuschin by Oscillatoria limnetica and Hydrocoleum 
oligotrichum after 7 days was 90.23% and 92.44%, respectively, while 
the degradation of Methyl Red by the same species was 50.18% and 
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53.23%. El-Sheekh et al. (2018) also investigated the biodegradability of 
the Cyanobacterium Aphanocapsa elachista and the green alga Chlorella 
vulgaris, which were isolated from contaminated industrial areas. After 
one week of incubation, 55% of decolorization was observed in 
Dispersed Orange 2 RL by C. vulgaris and 49% in Reactive Yellow 3 RN 
by A. elachista (El-Sheekh et al., 2018). 

4. Conclusions and future perspectives 

Water is the most essential component of life for all living organisms, 
and it is estimated that nearly 800 million people around the world still 
do not have access to safe drinking water of sufficient quality for do-
mestic purposes. The rampant pollution of natural water resources by 
organic and inorganic pollutants has become an issue for many countries 
in recent years. A wide range of toxic xenobiotics are found at high 
concentrations in textile wastewater, which pose serious environmental 
and public health risks. Toxic dye-containing wastewater is a major 
problem because textile mills all over the world regularly discharge 
millions of gallons of highly polluted wastewater. Treatment of dye- 
containing wastewater, on the other hand, is a significant challenge 
because there is no specific and economically viable technique for 
adequately treating such a problem. Many traditional and emerging 
treatment approaches for dye-containing wastewater have been re-
ported. Dye removal/degradation from dye-containing wastewater ap-
pears to be effective using physical and chemical methods. However, 
these approaches have high operating costs and produce undesirable 
byproducts. When compared to physical and chemical methods, the 
microbial approach to dye-containing wastewater remediation is more 
cost effective, environmentally friendly, and globally acceptable. How-
ever, one of the drawbacks of biological approaches is that they are less 
effective and should be administered over a long period of time. As a 
result, more research is required until an advanced, zero-waste process 
is established, as well as to minimize environmental and public health 
hazards during the transition from laboratory to pilot scale. 
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Dória, A.R., Pupo, M., Santos, G.D.O.S., da Silva Vilar, D., Torres, N.H., Ferreira, L.F.R., 
Cavalcanti, E.B., Eguiluz, K.I.B., Salazar-Banda, G.R., 2020. Electrochemical 
oxidation of indanthrene blue dye in a filter-press flow reactor and toxicity analyses 
with Raphidocelis subcapitata and Lactuca sativa. Ecotoxicol. Environ. Saf. 198, 
110659. 

Dotto, J., Fagundes-Klen, M.R., Veit, M.T., Palácio, S.M., Bergamasco, R., 2019. 
Performance of different coagulants in the coagulation/flocculation process of textile 
wastewater. J. Clean. Prod. 208, 656–665. 

Dutta, S., Bhattacharjee, J., 2022. A comparative study between physicochemical and 
biological methods for effective removal of textile dye from wastewater. 
Development in Wastewater Treatment Research and Processes. Elsevier, pp. 1–21. 

Ebency, C.I.L., Rajan, S., Murugesan, A.G., Rajesh, R., Elayarajah, B., 2013. 
Biodegradation of textile azo dyes and its bioremediation potential using seed 
germination efficiency. Int. J. Curr. Microbiol. Appl. Sci. 2 (10), 496–505. 

Elgarahy, A.M., Elwakeel, K.Z., Mohammad, S.H., Elshoubaky, G.A., 2021. A critical 
review of biosorption of dyes, heavy metals and metalloids from wastewater as an 
efficient and green process. Clean. Eng. Technol. 4, 100209. 

El-Sheekh, M.M., Abou-El-Souod, G.W., El Asrag, H.A., 2018. Biodegradation of some 
dyes by the green alga Chlorella vulgaris and The Cyanobacterium Aphanocapsa 
elachista. Egypt. J. Bot. 58 (3), 311–320. 

El-Sheekh, M.M., Gharieb, M.M., Abou-El-Souod, G.W., 2009. Biodegradation of dyes by 
some green algae and cyanobacteria. Int. Biodeterior. Biodegrad. 63 (6), 699–704. 
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